If for real values of $x,\cos \theta = x + \frac{1}{x},$ then
$\theta $ is an acute angle
$\theta $ is a right angle
$\theta $ is an obtuse angle
No value of $\theta $ is possible
The value of $2 \sin \left(12^{\circ}\right)-\sin \left(72^{\circ}\right)$ is
Find the value of the trigonometric function $\sin \left(-\frac{11 \pi}{3}\right)$
If $0 < x < \pi $ and $\cos x + \sin x = \frac{1}{2}$,then $tan \,x$ is
If $\cos x + {\cos ^2}x = 1,$ then the value of ${\sin ^2}x + {\sin ^4}x$ is
If $\sin (\alpha - \beta ) = \frac{1}{2}$ and $\cos (\alpha + \beta ) = \frac{1}{2},$ where $\alpha $ and $\beta $ are positive acute angles, then