Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that $\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cdot \cos \left(\frac{A-B}{2}\right)$

$L.H.S.$ $=\sin x+\sin 3 x+\sin 5 x+\sin 7 x$

$=(\sin x+\sin 5 x)+(\sin 3 x+\sin 7 x)$

$=2 \sin \left(\frac{x+5 x}{2}\right) \cdot \cos \left(\frac{x-5 x}{2}\right)+2 \sin \left(\frac{3 x+7 x}{2}\right) \cos \left(\frac{3 x-7 x}{2}\right)$

$=2 \sin 3 x \cos (-2 x)+2 \sin 5 x \cos (-2 x)$

$=2 \sin 3 x \cos 2 x+2 \sin 5 x \cos 2 x$

$=2 \cos 2 x[\sin 3 x+\sin 5 x]$

$=2 \cos 2 x\left[2 \sin \left(\frac{3 x+5 x}{2}\right) \cdot \cos \left(\frac{3 x-5 x}{2}\right)\right]$

$=2 \cos 2 x[2 \sin 4 x \cdot \cos (-x)]$

$=4 \cos 2 x \sin 4 x \cos x=R . H . S.$

Similar Questions

Which of the following is correct

If $\sin x + {\sin ^2}x = 1,$ then ${\cos ^8}x + 2{\cos ^6}x + {\cos ^4}x = $

If $a\,{\cos ^3}\alpha + 3a\,\cos \alpha \,{\sin ^2}\alpha = m$ and $a\,{\sin ^3}\alpha + 3a\,{\cos ^2}\alpha \sin \alpha = n,$ then  ${(m + n)^{2/3}} + {(m - n)^{2/3}}$ is equal to

Convert $40^{\circ} 20^{\prime}$ into radian measure.

If $\tan \theta + \sec \theta = {e^x},$ then $\cos \theta $ equals