If $x = a{\cos ^3}\theta ,y = b{\sin ^3}\theta ,$ then

  • A

    ${\left( {\frac{a}{x}} \right)^{2/3}} + {\left( {\frac{b}{y}} \right)^{2/3}} = 1$

  • B

    ${\left( {\frac{b}{x}} \right)^{2/3}} + {\left( {\frac{a}{y}} \right)^{2/3}} = 1$

  • C

    ${\left( {\frac{x}{a}} \right)^{2/3}} + {\left( {\frac{y}{b}} \right)^{2/3}} = 1$

  • D

    ${\left( {\frac{x}{b}} \right)^{2/3}} + {\left( {\frac{y}{a}} \right)^{2/3}} = 1$

Similar Questions

Find the radius of the circle in which a central angle of $60^{\circ}$ intercepts an arc of length $37.4 \,cm$ ( use $\pi=\frac{22}{7}$ ).

If $\cos \theta = \frac{1}{2}\left( {x + \frac{1}{x}} \right)$, then $\frac{1}{2}\left( {{x^2} + \frac{1}{{{x^2}}}} \right) = $

Find the degree measures corresponding to the following radian measures (Use $\pi=\frac{22}{7}$ ).

$\frac{11}{16}$

$\tan 1^\circ \tan 2^\circ \tan 3^\circ \tan 4^\circ ........\tan 89^\circ = $

Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2},$ if $\tan x=\frac{-4}{3}, x$ in quadrant $II$