જો રેખા $y=m x+c$ એ વર્તુળ $(x-3)^{2}+y^{2}=1$ નો સ્પર્શક છે અને તે રેખા $\mathrm{L}_{1},$ ને લંબ છે કે જ્યાં રેખા $\mathrm{L}_{1}$ એ વર્તુળ $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ નો બિંદુ $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ આગળનો સ્પર્શક હોય તો . .. .
$c^{2}-6 c+7=0$
$c^{2}+6 c+7=0$
$c^{2}+7 c+6=0$
$c^{2}-7 c+6=0$
વર્તૂળ $x^2 + y^2 -2x + 4y - 4 = 0$, માટે રેખા $2x - y - 1 = 0$ શું છે ?
$(\alpha , \beta)$ પરથી વર્તૂળ $x^{2} + y^{2} = a^{2}$ પર દોરેલા બે સ્પર્શકો વચ્ચેનો ખૂણો :
રેખા $ 5x + 12y + 8 = 0 $ ને લંબ હોય, તેવા વર્તૂળ $x^2 + y^2 - 22x - 4y + 25 = 0 $ ના સ્પર્શકનું સમીકરણ....
વર્તુળ $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ પર બિંદુ $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ માંથી દોરેલ બે ભિન્ન જીવાઓને દુભાગે તેવી $a^2$ની તમામ કિંમત નો ગણ $........$ છે.
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$