વર્તુળ $2 x ^2+2 y ^2-(1+ a ) x -(1- a ) y =0$ પર બિંદુ $P\left(\frac{1+a}{2}, \frac{1-a}{2}\right)$ માંથી દોરેલ બે ભિન્ન જીવાઓને દુભાગે તેવી $a^2$ની તમામ કિંમત નો ગણ $........$ છે.
$(8, \infty)$
$(4, \infty)$
$(0,4]$
$(2,12]$
કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
બિંદુ $\mathrm{P}(-1,1)$ માંથી વર્તુળ $\mathrm{x}^{2}+\mathrm{y}^{2}-2 \mathrm{x}-6 \mathrm{y}+6=0$ પર બે સ્પર્શકો દોરવામાં આવે છે. જો સ્પર્શકો વર્તુળને બિંદુઓ $A$ અને $B$ આગળ સ્પર્શે છે અને જો બિંદુ $D$ એ વર્તુળ પરનું બિંદુ છે કે જેથી $A B$ અને $A D$ ની લંબાઈ સમાન થાય છે તો ત્રિકોણ $A B D$ નું ક્ષેત્રફળ મેળવો.
રેખા $8x - 15y + 25 = 0$ ને સ્પર્શતું અને કેન્દ્ર $(3, 1)$ વાળા વર્તૂળનું સમીકરણ શોધો.
રેખા $2 x - y +1=0$ એ બિંદુ $(2,5)$ આગળ વર્તુળનો સ્પર્શક બને છે કે જેનું કેન્દ્ર રેખા $x-2 y=4$ પર આવેલ હોય તો વર્તુળની ત્રિજ્યા મેળવો.
જો વર્તુળ $x ^2+ y ^2-2 x + y =5$ ના બિંદુઓ $P$ અને $Q$ આગળ ના સ્પર્શકોએ $R \left(\frac{9}{4}, 2\right)$ આગળ છેદે છે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ મેળવો.