કેન્દ્ર $(2,3)$ અને ત્રિજ્યા $4$ વાળું વર્તુળ રેખા $x+y=3$ ને બિંદુઓ $P$ અને $Q$ માં છેદે છે. જો $P$ અને $Q$ પાસેના સ્પર્શકો બિંદુ $S(\alpha, \beta)$ માં છેદે, તો $4 \alpha-7 \beta=....................$
$11$
$10$
$80$
$90$
લંબચોરસના વિકર્ણો $(0, 0)$ અને $(8, 6)$ ના અંત્ય બિંદુઓ છે. આ વિકર્ણોને સમાંતર હોય તેવા લંબચોરસના પરિવૃતના સ્પર્શકોનું સમીકરણ :
વ્રક ${x^2} = y - 6$ ને બિંદુ $\left( {1,7} \right)$ આગળનો સ્પર્શક જો વર્તૂળ ${x^2} + {y^2} + 16x + 12y + c = 0$ ને સ્પર્શે તો $c$ ની કિંમત . . . છે. .
ઉગમબિદુમાંથી વર્તૂળ ${x^2} + {y^2} - 2rx - 2hy + {h^2} = 0$ પર દોરવામાં આવેલ સ્પર્શકનું સમીકરણ મેળવો.
જો વર્તુળ $x ^2+ y ^2-2 x + y =5$ ના બિંદુઓ $P$ અને $Q$ આગળ ના સ્પર્શકોએ $R \left(\frac{9}{4}, 2\right)$ આગળ છેદે છે તો ત્રિકોણ $PQR$ નું ક્ષેત્રફળ મેળવો.
ધારો કે રેખાઓ $y+2 x=\sqrt{11}+7 \sqrt{7}$ અને $2 y + x =2 \sqrt{11}+6 \sqrt{7}$ એ વર્તુળ $C:(x-h)^{2}+(y-k)^{2}=r^{2}$. ના અભિલંબ છે જો રેખા $\sqrt{11} y -3 x =\frac{5 \sqrt{77}}{3}+11$ એ વર્તુળ $C$, નો સ્પર્શક હોય તો $(5 h-8 k)^{2}+5 r^{2}$ નું મૂલ્ય ...................છે