If a line, $y=m x+c$ is a tangent to the circle, $(x-3)^{2}+y^{2}=1$ and it is perpendicular to a line $\mathrm{L}_{1},$ where $\mathrm{L}_{1}$ is the tangent to the circle, $\mathrm{x}^{2}+\mathrm{y}^{2}=1$ at the point $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right),$ then

  • [JEE MAIN 2020]
  • A

    $c^{2}-6 c+7=0$

  • B

    $c^{2}+6 c+7=0$

  • C

    $c^{2}+7 c+6=0$

  • D

    $c^{2}-7 c+6=0$

Similar Questions

A pair of tangents are drawn to a unit circle with centre at the origin and these tangents intersect at A enclosing an angle of $60^o$. The area enclosed by these tangents and the arc of the circle is

If the lengths of the chords intercepted by the circle ${x^2} + {y^2} + 2gx + 2fy = 0$ from the co-ordinate axes be $10$ and $24$ respectively, then the radius of the circle is..

If the length of the tangents drawn from the point $(1,2)$ to the circles ${x^2} + {y^2} + x + y - 4 = 0$ and $3{x^2} + 3{y^2} - x - y + k = 0$ be in the ratio $4 : 3$, then $k =$

Which of the following lines is a tangent to the circle ${x^2} + {y^2} = 25$ for all values of $m$.....

A pair of tangents are drawn from the origin to the circle ${x^2} + {y^2} + 20(x + y) + 20 = 0$. The equation of the pair of tangents is