જો $r,k,p \in W,$ હોય તો $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ ની કિમત મેળવો 

  • A

    $\left( {\begin{array}{*{20}{c}}   {60} \\    {50}  \end{array}} \right)$

  • B

    $\left( {\begin{array}{*{20}{c}}   {60} \\    {30}  \end{array}} \right)$

  • C

    $\left( {\begin{array}{*{20}{c}}   {60} \\    {20}  \end{array}} \right)$

  • D

    $\left( {\begin{array}{*{20}{c}}   {30} \\    {10}  \end{array}} \right)\left( {\begin{array}{*{20}{c}}   {30} \\    {20}  \end{array}} \right)$

Similar Questions

${(x + y)^n}$ વિસ્તરણમાં સહગુણકોનો સરવાળો $4096$ છે , તો વિસ્તરણમાં મહતમ સહગુણક મેળવો.

  • [AIEEE 2002]

$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)=$  . . .

$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ ના વિસ્તરણમાં $x^r (0 \le r \le n - 1)$ નો સહગુણક મેળવો 

${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.

$\sum_{\substack{i, j=0 \\ i \neq j}}^{n}{ }^{n} C_{i}{ }^{n} C_{j}$ ની કિમંત મેળવો.

  • [JEE MAIN 2022]