If $r,k,p \in W,$ then $\sum\limits_{r + k + p = 10} {{}^{30}{C_r} \cdot {}^{20}{C_k} \cdot {}^{10}{C_p}} $ is equal to -
$\left( {\begin{array}{*{20}{c}}
{60} \\
{50}
\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}
{60} \\
{30}
\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}
{60} \\
{20}
\end{array}} \right)$
$\left( {\begin{array}{*{20}{c}}
{30} \\
{10}
\end{array}} \right)\left( {\begin{array}{*{20}{c}}
{30} \\
{20}
\end{array}} \right)$
If $\left({ }^{30} C _1\right)^2+2\left({ }^{30} C _2\right)^2+3\left({ }^{30} C _3\right)^2+\ldots \ldots+30\left({ }^{30} C _{30}\right)^2=$ $\frac{\alpha 60 !}{(30 !)^2}$, then $\alpha$ is equal to
The sum, of the coefficients of the first $50$ terms in the binomial expansion of $(1-x)^{100}$, is equal to
In the polynomial $(x - 1)(x - 2)(x - 3).............(x - 100),$ the coefficient of ${x^{99}}$ is
Let $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !}$. Then the sum $\frac{1}{2^{10}} \sum \limits_{ k =0}^{10}\left(\frac{10}{ k }\right) k ^2$, lies in the interval
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is