$\left( {\begin{array}{*{20}{c}}n\\0\end{array}} \right) + 2\,\left( {\begin{array}{*{20}{c}}n\\1\end{array}} \right) + {2^2}\left( {\begin{array}{*{20}{c}}n\\2\end{array}} \right) + ..... + {2^n}\left( {\begin{array}{*{20}{c}}n\\n\end{array}} \right)=$ . . .
${2^n}$
$0$
${3^n}$
એકપણ નહીં.
ધારોકે $\sum \limits_{r=0}^{2023} r^{2023} C_r=2023 \times \alpha \times 2^{2022}$, તો $\alpha$ નું મૂલ્ય $............$ છે.
બહુપદી $(x-1) (x-2^1) (x-2^2) .... (x-2^{19})$ માં $x^{19}$ નો સહગુણક મેળવો
$(1 + x + x^2 + x^3 +.... + x^{100})^3$ ના વિસ્તરણમાં $x^{100}$ નો સહગુણક મેળવો
${(1 + x)^{15}}$ ના વિસ્તરણમાં છેલ્લા આઠ પદનો સરવાળો મેળવો.
જો $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $\mathrm{A}$ વડે દર્શાવાય તથા $\left(1+x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $B$ વડે દર્શાવાય, તો :