${(1 + x)^{50}}$ ના વિસ્તરણમાં $x$ ની અયુગ્મ ઘાતાંકના સહગુણકનો સરવાળો મેળવો.
$0$
${2^{49}}$
${2^{50}}$
${2^{51}}$
ધારો કે $(1+x)^{99}$ના વિસ્તરણમાં $x$ની અયુગ્મ ઘાતોના સહગુણકોનો સરવાળો $K$ છે. ધારો કે $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ ના વિસ્તરણમાં મધ્યમ પદ ' $a$' છે. જો $\frac{200_{C_99} K}{a}=\frac{2^\ell m}{n}$ હોય, જ્યાં $m$ અને $n$ અયુગ્મ સંખ્યાઓ હોય, તો ક્રમયુક્ત જોડ $(l, n )=..........$
જો ${s_1} = \mathop \sum \limits_{j = 1}^{10} j\left( {j - 1} \right)\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,$$\;{s_2} = \mathop \sum \limits_{j = 1}^{10} j\;\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;and,$${s_3} = \mathop \sum \limits_{j = 1}^{10} {j^2}\left( {\begin{array}{*{20}{c}}{10}\\j\end{array}} \right)\;,\;$
વિધાન $1$:${s_3} = 55 \times {2^9}$
વિધાન $2$: ${s_1} = 90 \times {2^8}\;$અને ${s_2} = 10 \times {2^8}$
જો $1+\left(2+{ }^{49} C _{1}+{ }^{49} C _{2}+\ldots .+{ }^{49} C _{49}\right)\left({ }^{50} C _{2}+{ }^{50} C _{4}+\right.$ $\ldots . .+{ }^{50} C _{ so }$ ) ની કિમંત $2^{ n } . m$ હોય તો $n+m$ ની કિમંત મેળવો. કે જ્યાં $m$ એ અયુગ્મ છે.
જો $n$ એ ધન પૂર્ણાક છે કે જેથી $n \ge 3$, હોય તો શ્રેણી $1 . n - \frac{{\left( {n\, - \,1} \right)}}{{1\,\,!}} (n - 1) + \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)}}{{2\,\,!}} (n - 2) $$- \frac{{\left( {n\, - \,1} \right)\,\,\left( {n\, - \,2} \right)\,\,\left( {n\, - \,3} \right)}}{{3\,\,!}} (n - 3) + ......$ ના $n$ પદોનો સરવાળો મેળવો