જો $\left| {\begin{array}{*{20}{c}}
  {\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\ 
  {{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\ 
  {\cos 4x}&{{{\cos }^2}x}&{\cos 2x} 
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ તો $a_0$ મેળવો.

  • A

    $1$

  • B

    $0$

  • C

    $-1$

  • D

    $2$

Similar Questions

જો $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, તો $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

જો $M$ અને $m$ એ અનુક્રમે $f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો  $M ^4- m ^4$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]

જો $a, b, c > 0$ અને $\Delta  = \left| \begin{gathered}
  a + b\,\,b\,\,c \hfill \\
  b\, + \,c\,\,c\,\,\,a \hfill \\
  c + a\,\,a\,\,b \hfill \\ 
\end{gathered}  \right| ,$ હોય તો આપલે પૈકી ક્યૂ વિધાન અસત્ય થાય.

$\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right| = $

સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{1 + x}&1&1\\1&{1 + x}&1\\1&1&{1 + x}\end{array}\,} \right| = 0$    ના બીજ મેળવો.