If $\left| {\begin{array}{*{20}{c}}
{\cos 2x}&{{{\sin }^2}x}&{\cos 4x} \\
{{{\sin }^2}x}&{\cos 2x}&{{{\cos }^2}x} \\
{\cos 4x}&{{{\cos }^2}x}&{\cos 2x}
\end{array}} \right| = {a_0} + {a_1}\sin x + {a_2}{\sin ^2}x + .....$ then $a_0$ is equal to
$1$
$0$
$-1$
$2$
For real numbers $\alpha$ and $\beta$, consider the following system of linear equations:
$x+y-z=2, x+2 y+\alpha z=1,2 x-y+z=\beta$. If the system has infinite solutions, then $\alpha+\beta$ is equal to $.....$
Let $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. Then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|$ is
The value of a for which the system of equations ${a^3}x + {(a + 1)^3}y + {(a + 2)^3}z = 0,$ $ax + (a + 1)y + (a + 2)z = 0,$ $x + y + z = 0,$ has a non zero solution is
If $\alpha ,\beta \ne 0$ and $f\left( n \right) = {\alpha ^n} + {\beta ^n}$ and $\left| {\begin{array}{*{20}{c}}3&{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}\\{1 + f\left( 1 \right)}&{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}\\{1 + f\left( 2 \right)}&{1 + f\left( 3 \right)}&{1 + f\left( 4 \right)}\end{array}} \right|\; = K{\left( {1 - \alpha } \right)^2}$ ${\left( {1 - \beta } \right)^2}{\left( {\alpha - \beta } \right)^2}$ ,then $K=$ . . . . . .
Find equation of line joining $(3,1)$ and $(9,3)$ using determinants