જો $M$ અને $m$ એ અનુક્રમે $f(x)=\left|\begin{array}{ccc}1+\sin ^2 x & \cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & 1+\cos ^2 x & 4 \sin 4 x \\ \sin ^2 x & \cos ^2 x & 1+4 \sin 4 x\end{array}\right|, x \in R$ ની મહતમ અને ન્યૂનતમ કિમતો હોય તો  $M ^4- m ^4$ ની કિમંત મેળવો.

  • [JEE MAIN 2025]
  • A
    $1280$
  • B
    $1295$
  • C
    $1040$
  • D
    $1215$

Similar Questions

જો $\omega = - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}$. તો $\left| {\,\begin{array}{*{20}{c}}1&1&1\\1&{ - 1 - {\omega ^2}}&{{\omega ^2}}\\1&{{\omega ^2}}&{{\omega ^4}}\end{array}\,} \right|= . . . $

  • [IIT 2002]

સમીકરણ સંહતિઓ $4 x+\lambda y+2 z=0$ ;  $2 x-y+z=0$ ;  $\mu x +2 y +3 z =0, \lambda, \mu \in R$ ને શૂન્યતર ઉકેલ હોય તો આપેલ પૈકી ક્યૂ સત્ય છે ?

  • [JEE MAIN 2021]

વિધાન $-1$ : સમીકરણો  $x + \left( {\sin \,\alpha } \right)y + \left( {\cos \,\alpha } \right)z = 0$ ;$x + \left( {\cos \,\alpha } \right)y + \left( {\sin \alpha } \right)z = 0$ ;$x - \left( {\sin \,\alpha } \right)y - \left( {\cos \alpha } \right)z = 0$ ; ને શૂન્યતર ઉકેલ એ $\alpha $ ની માત્ર એકજ કિમત કે જે અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ તેના માટે ધરાવે છે .

વિધાન $-2$ : સમીકરણ કે જે $\alpha $ સ્વરૂપ માં છે

$\left| {\begin{array}{*{20}{c}}
  {\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha } \\ 
  {\sin {\mkern 1mu} \alpha }&{\cos {\mkern 1mu} \alpha }&{\sin {\mkern 1mu} \alpha } \\ 
  {\cos {\mkern 1mu} \alpha }&{ - \sin {\mkern 1mu} \alpha }&{ - \cos {\mkern 1mu} \alpha } 
\end{array}} \right| = 0$

નું એક માત્ર બીજ અંતરાલ $\left( {0\,,\,\frac{\pi }{2}} \right)$ માં છે .

  • [JEE MAIN 2013]

જો સમીકરણ સંહિત

$ 2 x+7 y+\lambda z=3 $

$ 3 x+2 y+5 z=4 $

$ x+\mu y+32 z=-1$

ને અસંખ્ય ઉકેલો હોય, તો $(\lambda-\mu)=$...........

  • [JEE MAIN 2024]

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $