જો $a \in R$ હોય અને સમીકરણ $ - 3{\left( {x - \left[ x \right]} \right)^2} + 2\left( {x - \left[ x \right]} \right) + {a^2} = 0$ ને પૂર્ણાંક ઉકેલ ન હોય તો $a$ શકય કિંમતો . . . અંતરાલમાં હોય . .
$\left( { - 1,0} \right) \cup \left( {0,1} \right)$
$\left( {1,2} \right)$
$\left( { - 2, - 1} \right)$
$\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$
જો $\mathrm{a}=\max _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ અને $\beta=\min _{x \in R}\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ આપેલ છે અને જો દ્રીઘાત સમીકરણ $8 x^{2}+b x+c=0$ ના બીજો $\alpha^{1 / 5}$ અને $\beta^{1 / 5}$, હોય તો $c-b$ ની કિમંત મેળવો.
સમીકરણ $|x{|^2}$-$3|x| + 2 = 0$ ના વાસ્તવિક બીજની સંખ્યા મેળવો.
સમીકરણ $|x - 2|^2 + |x - 2| - 6 = 0$ નાં બીજ ......છે.
જો $a+b+c=1, a b+b c+c a=2$ અને $a b c=3$ હોય તો $a^{4}+b^{4}+c^{4}$ ની કિમંત મેળવો.
જો $\alpha,\beta,\gamma, \delta$ એ સમીકરણ $x^4-100x^3+2x^2+4x+10 = 0$ ના બીજો હોય તો $\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}+\frac{1}{\delta}$ ની કિમત મેળવો