यदि $a \in R$ तथा समीकरण $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$

( जहाँ $[x]$ उस बड़े से बड़े पूर्णांक को दर्शाता है जो $\leq \, x$ है) का कोई पूर्णांकीय हल नहीं है, तो $a$ के सभी संभव मान जिस अंतराल में स्थित हैं, वह है:

  • [JEE MAIN 2014]
  • A

    $\left( { - 1,0} \right) \cup \left( {0,1} \right)$

  • B

    $\left( {1,2} \right)$

  • C

    $\left( { - 2, - 1} \right)$

  • D

    $\left( { - \infty , - 2} \right) \cup \left( {2,\infty } \right)$

Similar Questions

समीकरण $5+\left|2^{x}-1\right|=2^{x}\left(2^{x}-2\right)$ के वास्तविक मूलों की संख्या है

  • [JEE MAIN 2019]

समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$

  • [JEE MAIN 2022]

समीकरण $\mathrm{x}^2-4 \mathrm{x}+[\mathrm{x}]+3=\mathrm{x}[\mathrm{x}]$, जहाँ $[\mathrm{x}]$ महत्तम पूर्णांक फलन है,

  • [JEE MAIN 2023]

यदि $\sqrt {3{x^2} - 7x - 30}  + \sqrt {2{x^2} - 7x - 5}  = x + 5$ हो, तो $x$ बराबर है

$k ( k \neq 0)$ के सभी पूर्णांक मानों, जिनके लिए $x$ में समीकरण $\frac{2}{ x -1}-\frac{1}{ x -2}=\frac{2}{ k }$ का कोई वास्तविक मूल नहीं है, का योग है .......... |

  • [JEE MAIN 2021]