यदि $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ प्रत्येक वास्तविक संख्याओं के लिए, तब $f$ का न्यूनतम मान
अस्तित्व नहीं है क्योंकि $f$ परिबद्ध है
प्राप्त नहीं होता है यद्यपि $f$ परिबद्ध है
$+1$ है
$-1$ है
फलन $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ का डोमेन (प्रान्त) है
फलन $f(x) = {\sin ^{ - 1}}5x$ का डोमेन (प्रान्त) है
यदि महत्तम पूर्णांक फलन में, प्रान्त वास्तविक संख्याओं का समुच्चय है ता परिसर समुच्चय होगा
समुच्चय $A$ में $3$ तथा $B$ में $4$ अवयव हैं, तब $A$ से $B$ में बनने वाले एकैकी प्रतिचित्रणों की संख्या होगी
मान लें कि $f(x)=x^6-2 x^5+x^3+x^2-x-1$ एवं $g(x)=x^4-x^3-x^2-1$ दो बहुपद है। मान लीजिए कि $g(x)=0$ के मूल $a, b, c$, एवं $d$ है, तब $f(a)+f(b)+f(c)+$ $f(d)$ का मान क्या है ?