समुच्चय $A$ में $3$ तथा $B$ में $4$ अवयव हैं, तब $A$ से $B$ में बनने वाले एकैकी प्रतिचित्रणों की संख्या होगी
$144$
$12$
$24$
$64$
सभी वास्तविक $x \neq 3$ के लिए फलन $f(x)=\frac{16 x^2-96 x+153}{x-3}$ को परिभाषित करें । $f(x)$ का सबसे छोटा धनात्मक मान है ?
माना $f:(1,3) \rightarrow R$ एक फलन है, जो $f( x )=\frac{ X [ X ]}{1+ x ^{2}}$, द्वारा परिभाषित है जहाँ $[ x ]$ महत्तम पूर्णाक $\leq x$ को दर्शाता है। तो $f$ का परिसर है
माना कि $E_1=\left\{x \in R : x \neq 1\right.$ और $\left.\frac{x}{x-1}>0\right\}$
और $E_2=\left\{x \in E_1: \sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)\right.$ एक वास्तविक संख्या (real number) है $\}$
(यहाँ प्रतिलोम त्रिकोणमितीय फलन (inverse trigonometric function) $\sin ^{-1} x,\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ में मान धारण करता है।)
माना कि फलन $f: E_1 \rightarrow R , f(x)=\log _e\left(\frac{x}{x-1}\right)$ के द्वारा परिभाषित है
और फलन $g: E_2 \rightarrow R , g(x)=\sin ^{-1}\left(\log _e\left(\frac{x}{x-1}\right)\right)$ के द्वारा परिभाषित है।
सूची $I$ | सूची $II$ |
$P$ $f$ का परिसर (range) है | $1$ $\left(-\infty, \frac{1}{1- e }\right] \cup\left[\frac{ e }{ e -1}, \infty\right)$ |
$Q$ $g$ के परिसर में समाहित (contained) है | $2$ $(0,1)$ |
$R$ $f$ के प्रान्त (domain) में समाहित है | $3$ $\left[-\frac{1}{2}, \frac{1}{2}\right]$ |
$S$ $g$ का प्रान्त है | $4$ $(-\infty, 0) \cup(0, \infty)$ |
$5$ $\left(-\infty, \frac{ e }{ e -1}\right]$ | |
$6$ $(-\infty, 0) \cup\left(\frac{1}{2}, \frac{ e }{ e -1}\right]$ |
दिए हुए विकल्पों मे से सही विकल्प है:
माना फलन $\mathrm{f}: \mathrm{R}-\{0,1\} \rightarrow \mathrm{R}$ इस प्रकार है कि $\mathrm{f}(\mathrm{x})+\mathrm{f}\left(\frac{1}{1-\mathrm{x}}\right)=1+\mathrm{x}$ है। तो $\mathrm{f}($2$)$ बराबर है-
यदि $f(x + ay,\;x - ay) = axy$, तब $f(x,\;y) =$