यदि $\tan \theta = - \frac{1}{{\sqrt 3 }}$ व $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, तो $\theta $ का मुख्य मान होगा
$\frac{\pi }{6}$
$\frac{{5\pi }}{6}$
$\frac{{7\pi }}{6}$
$ - \frac{\pi }{6}$
यदि $\sin 2\theta = \cos 3\theta $ व $\theta $ एक न्यूनकोण है, तो $\sin \theta $ का मान है
$\theta $का वह मान, जो कि $0$ एवं $\frac{\pi }{2}$ के मध्य हो तथा समीकरण
$\left| {\,\begin{array}{*{20}{c}}{1 + {{\sin }^2}\theta }&{{{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{1 + {{\cos }^2}\theta }&{4\sin 4\theta }\\{{{\sin }^2}\theta }&{{{\cos }^2}\theta }&{1 + 4\sin 4\theta }\end{array}\,} \right| = 0$
को संतुष्ट करता हो, है
मान लीजिए $S=\{x \in R : \cos (x)+\cos (\sqrt{2} x) < 2\}$, तब
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\cos 3 x+\cos x-\cos 2 x=0$
सिद्ध कीजिए: $\cos 2 x \cos _{2}^{x}-\cos 3 x \cos \frac{9 x}{2}=\sin 5 x \sin \frac{5 x}{2}$