यदि $(2\cos x - 1)(3 + 2\cos x) = 0,\,0 \le x \le 2\pi $, तो $x = $ 

  • A

    $\frac{\pi }{3}$

  • B

    $\frac{\pi }{3},\frac{{5\pi }}{3}$

  • C

    $\frac{\pi }{2},\frac{{5\pi }}{3},{\cos ^{ - 1}}\left( { - \frac{3}{2}} \right)$

  • D

    $\frac{{5\pi }}{3}$

Similar Questions

किसी पूर्णांक $n$ के लिये, $\sin x - \cos x = \sqrt 2 $ का व्यापक हल है

समीकरण $4{\cos ^2}x + 6$${\sin ^2}x = 5$ का व्यापक हल है  

यदि $L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ तथा $M =\cos  ^{2}$$\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ है, तो

  • [JEE MAIN 2020]

यदि $2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi  < x < \pi ,$ तब $x = $

$(x, y)$ के कितने युग्म समीकरणों $\sin x + \sin y = \sin (x + y)$ तथा $|x| + |y| = 1$ को संतुष्ट करते हैं