જો $\tan \theta = - \frac{1}{{\sqrt 3 }}$ અને $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, તો $\theta $ ની કિમત મેળવો.
$\frac{\pi }{6}$
$\frac{{5\pi }}{6}$
$\frac{{7\pi }}{6}$
$ - \frac{\pi }{6}$
જો ${\sin ^2}\theta = \frac{1}{4},$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીરકણ $1 - \cos \theta = \sin \theta .\sin \frac{\theta }{2}$ નો બીજ મેળવો.
$\sin \left(\pi \sin ^2 \theta\right)+\sin \left(\pi \cos ^2 \theta\right)=2 \cos \left(\frac{\pi}{2} \cos \theta\right)$ નું અંતરાલ $0 \leq \theta \leq 2 \pi$ માં ઉકેલની સંખ્યા મેળવો.
સમીકરણ $\cos x - x + \frac{1}{2} = 0$ નો એક ઉકેલ નીચેનામાંથી ............. ગણમાં આવેલ છે
જો સમીકરણ $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ ને $\theta$ માટે વાસ્તવિક ઉકેલો હોય તો $\lambda$ ની કિમત ......... અંતરાલમાં આવેલ છે