સમીકરણ ${\tan ^2}\theta + \sec 2\theta - = 1$ નું સમાધાન કરે તેવા $\theta $ નો વ્યાપક ઉકેલ મેળવો.
$m\pi ,n\pi + \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{3}$
$m\pi ,n\pi \pm \frac{\pi }{6}$
એકપણ નહિ.
જો $\sqrt 3 \tan 2\theta + \sqrt 3 \tan 3\theta + \tan 2\theta \tan 3\theta = 1$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\sin {\rm{ }}\left( {\frac{\pi }{4}\cot \theta } \right) = \cos {\rm{ }}\left( {\frac{\pi }{4}\tan \theta } \right)\,\,,$ તો $\theta = $
જો ${\sec ^2}\theta = \frac{4}{3}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $\cos \theta + \sec \theta = \frac{5}{2}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $