If $\cos \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1$, then the general value of $\theta $ is

  • A

    $2n\pi + \frac{\pi }{4}$

  • B

    $(2n + 1)\,\pi + \frac{\pi }{4}$

  • C

    $n\pi + \frac{\pi }{4}$

  • D

    $n\pi \pm \frac{\pi }{4}$

Similar Questions

If $\tan \theta = - \frac{1}{{\sqrt 3 }}$ and $\sin \theta = \frac{1}{2}$, $\cos \theta = - \frac{{\sqrt 3 }}{2}$, then the principal value of $\theta $ will be

The general value of $\theta $  that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in  I)$

If ${\sec ^2}\theta = \frac{4}{3}$, then the general value of $\theta  $ is

Let $P = \left\{ {\theta :\sin \,\theta  - \cos \,\theta  = \sqrt 2 \,\cos \,\theta } \right\}$ and $Q = \left\{ {\theta :\sin \,\theta  + \cos \,\theta  = \sqrt {2\,} \sin \,\theta } \right\}$ be two sets. Then

  • [JEE MAIN 2016]

Number of solutions of equation $secx = 1 + cosx + cos^2x + ........ \infty$ in $x \in [-50 \pi, 50 \pi]$ is -