If $\cos \theta = - \frac{1}{{\sqrt 2 }}$ and $\tan \theta = 1$, then the general value of $\theta $ is
$2n\pi + \frac{\pi }{4}$
$(2n + 1)\,\pi + \frac{\pi }{4}$
$n\pi + \frac{\pi }{4}$
$n\pi \pm \frac{\pi }{4}$
If $2(\sin x - \cos 2x) - \sin 2x(1 + 2\sin x)2\cos x = 0$ then
Number of solutions of $8cosx$ = $x$ will be
If $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, then $\theta = $
The number of solutions $x$ of the equation $\sin \left(x+x^2\right)-\sin \left(x^2\right)=\sin x$ in the interval $[2,3]$ is
Let $S=\left\{\theta \in[-\pi, \pi]-\left\{\pm \frac{\pi}{2}\right\}: \sin \theta \tan \theta+\tan \theta=\sin 2 \theta\right\} \text {. }$ If $T =\sum_{\theta \in S } \cos 2 \theta$, then $T + n ( S )$ is equal