જો $r\,\sin \theta = 3,r = 4(1 + \sin \theta ),\,\,0 \le \theta \le 2\pi ,$ તો $\theta = $
$\frac{\pi }{6},\frac{\pi }{3}$
$\frac{\pi }{6},\frac{{5\pi }}{6}$
$\frac{\pi }{3},\frac{\pi }{4}$
$\frac{\pi }{2},\pi $
સમીકરણ $\cos x - x + \frac{1}{2} = 0$ નું એક બીજ . . . . . અંતરાલમાં આવેલ છે.
સમીકરણ $4{\cos ^2}x + 6$${\sin ^2}x = 5$ નો ઉકેલ મેળવો.
જો $\tan (\pi \cos \theta ) = \cot (\pi \sin \theta ),$ તો $\cos \left( {\theta - \frac{\pi }{4}} \right) =$
જો $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2} $ એ $ 4 \cos \theta+5 \sin \theta=1$ ના ઉકેલ હોય, તો $\tan \alpha$ નું મૂલ્ચ .............. છે.
જો $\frac{{1 - {{\tan }^2}\theta }}{{{{\sec }^2}\theta }} = \frac{1}{2}$, તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.