यदि $2{\sin ^2}x + {\sin ^2}2x = 2,\, - \pi < x < \pi ,$ तब $x = $
$ \pm \frac{\pi }{6}$
$ \pm \frac{\pi }{4}$
$\frac{{3\pi }}{2}$
इनमें से कोई नहीं
समीकरणों $\sin \theta = \sin \alpha $ तथा $\cos \theta = \cos \alpha $ को संतुष्ट करने वाला $\theta $ का सर्वव्यापक मान है
$\lambda$ के सभी मानों जिनके लिए समीकरण $\cos ^2 2 x-2 \sin ^4 x-2 \cos ^2 x=\lambda$ का एक वास्तविक हल $x$ है का समुच्चय है :-
त्रिभुज $P Q R$ में, $P$ वृहत्तम कोण है तथा $\cos P=\frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अन्तःवृत्त भुजाओं $P Q, Q R$ तथा $R P$ को क्रमशः $N, L$ तथा $M$ पर इस तरह स्पर्श करता है कि $P N, Q L$ तथा $R M$ की लम्बाईयाँ क्रमागत सम पूर्ण संख्याएं है। तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाईयाँ) है (हैं)
$(A)$ $16$ $(B)$ $18$ $(C)$ $24$ $(D)$ $22$
यदि $\frac{{1 - \cos 2\theta }}{{1 + \cos 2\theta }} = 3$, तो $\theta $ का व्यापक मान है
यदि $\sqrt 2 \sec \theta + \tan \theta = 1,$ तो $\theta $ का व्यापक मान है