यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $
$\frac{\pi }{3}$
$\frac{\pi }{3},{\cos ^{ - 1}}\frac{3}{5}$
${\cos ^{ - 1}}\frac{3}{5}$
$\frac{\pi }{3},\pi - {\cos ^{ - 1}}\frac{3}{5}$
यदि $\tan (\cot x) = \cot (\tan x),$ तो $\sin 2x =$
समुच्चय $S =\left\{ x \in R : 2 \cos \left(\frac{ x ^2+ x }{6}\right)=4^{ x }+4^{- x }\right\}$ में अवयवों की संख्या है
मान लीजिए $S=\{x \in R : \cos (x)+\cos (\sqrt{2} x) < 2\}$, तब
समीकरण $2{\sin ^2}\theta - 3\sin \theta - 2 = 0$ को सन्तुष्ट करने वाला $\theta $ का व्यापक मान है
मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$