જો $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, તો $\theta = $
$\frac{\pi }{3}$
$\frac{\pi }{3},{\cos ^{ - 1}}\frac{3}{5}$
${\cos ^{ - 1}}\frac{3}{5}$
$\frac{\pi }{3},\pi - {\cos ^{ - 1}}\frac{3}{5}$
$x$ ની ............ કિમતોના ગણ માટે $cosx > sinx,$ થાય
જ્યાં $x\, \in \,\,\left( {\frac{\pi }{2}\,,\,\frac{{3\pi }}{2}} \right)$
અહી $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$
$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ હોય તો . . .
જો ${\sin ^2}\theta = \frac{1}{4},$ તો $\theta $ નો વ્યાપક ઉકેલ મેળવો.
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ નો ઉકેલ મેળવો.
જો $sin^4\,\,\alpha + 4\,cos^4\,\,\beta + 2 = 4\sqrt 2\,\,sin\,\alpha \,cos\,\beta ;$ $\alpha \,,\,\beta \, \in \,[0,\pi ],$ તો $cos( \alpha + \beta)$ = ......