निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\sin x+\sin 3 x+\sin 5 x=0$
$\sin x+\sin 3 x+\sin 5 x=0$
$(\sin x+\sin 5 x)+\sin 3 x=0$
$\Rightarrow\left[2 \sin \left(\frac{x+5 x}{2}\right) \cos \left(\frac{x-5 x}{2}\right)\right]+\sin 3 x=0$ $\left[\sin A+\sin B=2 \sin \left(\frac{A+B}{2}\right) \cos \left(\frac{A-B}{2}\right)\right]$
$\Rightarrow 2 \sin 3 x \cos (-2 x)+\sin 3 x=0$
$\Rightarrow 2 \sin 3 x \cos 2 x+\sin 3 x=0$
$\Rightarrow \sin 3 x(2 \cos 2 x+1)=0$
$\Rightarrow \sin 3 x=0 \quad$ or $\quad 2 \cos 2 x+1=0$
Now, $\sin 3 x=0 \Rightarrow 3 x=n \pi,$ where $n \in Z$
i.e., $x=\frac{n \pi}{3},$ where $n \in Z$
$2 \cos 2 x+1=0$
$\Rightarrow \cos 2 x=\frac{-1}{2}=-\cos \frac{\pi}{3}=\cos \left(\pi-\frac{\pi}{3}\right)$
$\Rightarrow \cos 2 x=\cos \frac{2 \pi}{3}$
$\Rightarrow 2 x=2 n \pi \pm \frac{2 \pi}{3},$ where $n \in Z$
$\Rightarrow x=n \pi \pm \frac{\pi}{3},$ where $n \in Z$
Therefore, the general solution is $\frac{n \pi}{3}$ or $n \pi \pm \frac{\pi}{3}, n \in Z$
समीकरण $(5 + 4\cos \theta )(2\cos \theta + 1) = 0$ का अंतराल $[0,\,\,2\pi ]$ में व्यापक हल होगा
यदि समीकरण $\cos 2 \theta \cos \frac{\theta}{2}=\cos 3 \theta \cos \frac{9 \theta}{2}$ को संतुष्ट करने वाले अंतराल $[-\pi, \pi]$ में $\theta$ के धनात्मक तथा ऋणात्मक मानों की संख्या क्रमशः $m$ तथा $n$ है, तो $\mathrm{mn}$ बराबर है____________.
यदि समीकरण $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ के $\theta$ में वास्तविक हल है, तो $\lambda$ निम्न में से किस अन्तराल में स्थित है ?
अंतराल $[0,2 \pi]$ में समीकरण $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ के विभिन्न हलों (distinct solutions) की संख्या है।
यदि $\tan (\cot x) = \cot (\tan x),$ तो $\sin 2x =$