निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\cot x=-\sqrt{3}$
$\cot x=-\sqrt{3}$
It is known that $\cot \frac{\pi}{6}=\sqrt{3}$
$\therefore \cot \left(\pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$ and $\cot \left(2 \pi-\frac{\pi}{6}\right)=-\cot \frac{\pi}{6}=-\sqrt{3}$
i.e., $\cot \frac{5 \pi}{6}=-\sqrt{3}$ and $\cot \frac{11 \pi}{6}=-\sqrt{3}$
Therefore, the principal solutions are $x=\frac{5 \pi}{6}$ and $\frac{11 \pi}{6}$
Now, $\cot x=\cot \frac{5 \pi}{6}$
$\Rightarrow \tan x=\tan \frac{5 \pi}{6}$ $\left[\cot x=\frac{1}{\tan x}\right]$
$\Rightarrow x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
Therefore, the general solution is $x=n \pi+\frac{5 \pi}{6},$ where $n \in Z$
निम्नलिखित समीकरणों का मुख्य तथा व्यापक हल ज्ञात कीजिए
$\tan x=\sqrt{3}$.
यदि $n$ एक पूर्णांक है, तब $\cos x - \sin x = \frac{1}{{\sqrt 2 }}$ का व्यापक हल है
$\sin x - 3\sin 2x + \sin 3x = $ $\cos x - 3\cos 2x + \cos 3x$ का व्यापक हल है
यदि $\sin 3\alpha = 4\sin \alpha \sin (x + \alpha )\sin (x - \alpha ),$ तब $x = $
$x \in[0,2 \pi]$ की संख्या, जिनके लिए $\left|\sqrt{2 \sin ^{4} x+18 \cos ^{2} x}-\sqrt{2 \cos ^{4} x+18 \sin ^{2} x}\right|$ $=1$ है