If $\sin 2\theta = \cos 3\theta $ and $\theta $ is an acute angle, then $\sin \theta $ is equal to

  • A

    $\frac{{\sqrt 5 - 1}}{4}$

  • B

    $\frac{{ - \sqrt 5 - 1}}{4}$

  • C

    $0$

  • D

    None of these

Similar Questions

The most general value of $\theta $ satisfying the equations $\tan \theta = - 1$ and $\cos \theta = \frac{1}{{\sqrt 2 }}$ is

If sum of all the solutions of the equation $8\cos x \cdot \left( {\cos \left( {\frac{\pi }{6} + x} \right) \cdot \cos \left( {\frac{\pi }{6} - x} \right) - \frac{1}{2}} \right) = 1$ in $\left[ {0,\pi } \right]$ is $k\pi $then $k$ is equal to :

  • [JEE MAIN 2018]

For $n \in Z$ , the general solution of the equation

$(\sqrt 3  - 1)\,\sin \,\theta \, + \,(\sqrt 3  + 1)\,\cos \theta \, = \,2$ is

The number of distinct solutions of the equation $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ in the interval $[0,2 \pi],$ is

  • [JEE MAIN 2020]

General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$