For $n \in Z$ , the general solution of the equation
$(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ is
$\theta \, = \,2n\pi \, \pm \,\frac{\pi }{4}\, + \,\frac{\pi }{{12}}$
$\theta \, = \,n\pi \, + {( - 1)^\pi }\,\frac{\pi }{4}\, + \,\frac{\pi }{{12}}$
$\theta \, = \,2n\pi \, \pm \,\frac{\pi }{4}\, - \,\frac{\pi }{{12}}$
$\theta \, = \,n\pi \, + {( - 1)^\pi }\,\frac{\pi }{4}\, - \,\frac{\pi }{{12}}$
If $\sin \theta + \cos \theta = 1$ then the general value of $\theta $ is
The number of values of $x$ for which $sin2x + sin4x = 2$ is
If $A + B + C = \pi$ & $sin\, \left( {A\,\, + \,\,\frac{C}{2}} \right) = k \,sin,\frac{C}{2}$ then $tan\, \frac{A}{2} \,tan \, \frac{B}{2}=$
The value of $\theta $ satisfying the given equation $\cos \theta + \sqrt 3 \sin \theta = 2,$ is
If the equation $2\ {\sin ^2}x + \frac{{\sin 2x}}{2} = k$ , has atleast one real solution, then the sum of all integral values of $k$ is