यदि $\sin 2\theta = \cos 3\theta $ व $\theta $ एक न्यूनकोण है, तो $\sin \theta $ का मान है
$\frac{{\sqrt 5 - 1}}{4}$
$\frac{{ - \sqrt 5 - 1}}{4}$
$0$
इनमें से कोई नहीं
समीकरण $\sqrt 3 \sin x + \cos x = 4$ के हल होंगे
समुच्चय $S =\left\{ x \in R : 2 \cos \left(\frac{ x ^2+ x }{6}\right)=4^{ x }+4^{- x }\right\}$ में अवयवों की संख्या है
यदि $L =\sin ^{2}\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ तथा $M =\cos ^{2}$$\left(\frac{\pi}{16}\right)-\sin ^{2}\left(\frac{\pi}{8}\right)$ है, तो
मानाकि $\theta, \phi \in[0,2 \pi]$ इस प्रकार है कि $2 \cos \theta(1-\sin \phi)=\sin ^2 \theta\left(\tan \frac{\theta}{2}+\cot \frac{\theta}{2}\right) \cos \phi-1, \tan (2 \pi-\theta) > 0$ और $-1 < \sin \theta<-\frac{\sqrt{3}}{2}$. तब $\phi$ निम्न में से किसको संतुष्ट नहीं कर सकता ?
$(A)$ $0<\phi<\frac{\pi}{2}$ $(B)$ $\frac{\pi}{2}<\phi<\frac{4 \pi}{3}$
$(C)$ $\frac{4 \pi}{3}<\phi<\frac{3 \pi}{2}$ $(D)$ $\frac{3 \pi}{2}<\phi<2 \pi$
अंतराल $\left[\begin{array}{lll}0, & 2 \pi\end{array}\right]$ में समीकरण $|\cot x|=\cot x+\frac{1}{\sin x}$ के हलों की संख्या है