General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{{14}}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{5}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{2}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{3}$
The general value of $\theta $ that satisfies both the equations $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ is $(n \in I)$
Number of solution $(s)$ of equation $cosec\, \theta -cot \,\theta = 1$ in $[0,2 \pi]$ is-
Let $f(x)=\cos 5 x+A \cos 4 x+B \cos 3 x$ $+C \cos 2 x+D \cos x+E$, and
$T=f(0)-f\left(\frac{\pi}{5}\right)+f\left(\frac{2 \pi}{5}\right)-f\left(\frac{3 \pi}{5}\right)+\ldots+f\left(\frac{8 \pi}{5}\right)-f\left(\frac{9 \pi}{5}\right) \text {. }$Then, $T$
Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$
Number of solutions of $\sqrt {\tan \theta } = 2\sin \theta ,\theta \in \left[ {0,2\pi } \right]$ is equal to