General solution of $\tan 5\theta = \cot 2\theta $ is  $($ where $n \in Z )$

  • A

    $\theta = \frac{{n\pi }}{7} + \frac{\pi }{{14}}$

  • B

    $\theta = \frac{{n\pi }}{7} + \frac{\pi }{5}$

  • C

    $\theta = \frac{{n\pi }}{7} + \frac{\pi }{2}$

  • D

    $\theta = \frac{{n\pi }}{7} + \frac{\pi }{3}$

Similar Questions

One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval

The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is

If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are

For $n \in Z$ , the general solution of the equation

$(\sqrt 3  - 1)\,\sin \,\theta \, + \,(\sqrt 3  + 1)\,\cos \theta \, = \,2$ is

If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is