General solution of $\tan 5\theta = \cot 2\theta $ is $($ where $n \in Z )$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{{14}}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{5}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{2}$
$\theta = \frac{{n\pi }}{7} + \frac{\pi }{3}$
One root of the equation $\cos x - x + \frac{1}{2} = 0$ lies in the interval
The smallest positive angle which satisfies the equation $2{\sin ^2}\theta + \sqrt 3 \cos \theta + 1 = 0$, is
If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
For $n \in Z$ , the general solution of the equation
$(\sqrt 3 - 1)\,\sin \,\theta \, + \,(\sqrt 3 + 1)\,\cos \theta \, = \,2$ is
If $\cos 2\theta = (\sqrt 2 + 1)\,\,\left( {\cos \theta - \frac{1}{{\sqrt 2 }}} \right)$, then the value of $\theta $ is