If $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, then $B =$

  • A

    $(2n + 1)\frac{\pi }{2}$

  • B

    $n\pi $

  • C

    $(2n + 1)\frac{\pi }{2}$

  • D

    $2n\pi $

Similar Questions

Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$

If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is

Let $S={\theta \in\left(0, \frac{\pi}{2}\right): \sum_{m=1}^{9}}$

$\sec \left(\theta+(m-1) \frac{\pi}{6}\right) \sec \left(\theta+\frac{m \pi}{6}\right)=-\frac{8}{\sqrt{3}}$ Then.

  • [JEE MAIN 2022]

The number of solutions of $|\cos x|=\sin x$, such that $-4 \pi \leq x \leq 4 \pi$ is.

  • [JEE MAIN 2022]

If ${\sin ^2}\theta = \frac{1}{4},$ then the most general value of $\theta $ is