Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to
$2\sqrt 2$
$2\sqrt 2 - 1$
$2 + 3\sqrt 2 $
$2\sqrt 2 + 1$
The solution of the equation ${\cos ^2}x - 2\cos x = $ $4\sin x - \sin 2x,$ $\,(0 \le x \le \pi )$ is
If $|cos\ x + sin\ x| + |cos\ x\ -\ sin\ x| = 2\ sin\ x$ ; $x \in [0,2 \pi ]$ , then maximum integral value of $x$ is
The number of solutions of the given equation $\tan \theta + \sec \theta = \sqrt 3 ,$ where $0 < \theta < 2\pi $ is
Solve $\sin 2 x-\sin 4 x+\sin 6 x=0$
If $\cos \,x = \frac{{2\cos y - 1}}{{2 - \cos y}},x,\,y\, \in \,\left( {0,\pi } \right),$ then $tan(x/2)cot(y/2) =$