Minimum value of the function $f(x) = \left| {\sin \,x + \cos \,x + \tan \,x + \cot \,x + \sec \,x + \ cosec\ x} \right|$ is equal to
$2\sqrt 2$
$2\sqrt 2 - 1$
$2 + 3\sqrt 2 $
$2\sqrt 2 + 1$
If $\tan \theta - \sqrt 2 \sec \theta = \sqrt 3 $, then the general value of $\theta $ is
Let $X=\{x \in R: \cos (\sin x)=\sin (\cos x)\} .$ The number of elements in $X$ is
The general solution of the trigonometric equation $\tan \theta = \cot \alpha $ is
The values of $\theta $ satisfying $\sin 7\theta = \sin 4\theta - \sin \theta $ and $0 < \theta < \frac{\pi }{2}$ are
The solution of the equation $4{\cos ^2}x + 6$${\sin ^2}x = 5$