If $|k|\, = 5$ and ${0^o} \le \theta \le {360^o}$, then the number of different solutions of $3\cos \theta + 4\sin \theta = k$ is
Zero
Two
One
Infinite
Let $\theta \in [0, 4\pi ]$ satisfy the equation $(sin\, \theta + 2) (sin\, \theta + 3) (sin\, \theta + 4) = 6$ . If the sum of all the values of $\theta $ is of the form $k\pi $, then the value of $k$ is
One of the solutions of the equation $8 \sin ^3 \theta-7 \sin \theta+\sqrt{3} \cos \theta=0$ lies in the interval
The general solution of ${\sin ^2}\theta \sec \theta + \sqrt 3 \tan \theta = 0$ is
The number of values of $x$ in the interval $[0, 5\pi]$ satisfying the equation $3sin^2x\, \,-\,\, 7sinx + 2 = 0$ is