यदि $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$, तब $B =$
$(2n + 1)\frac{\pi }{2}$
$n\pi $
$(2n + 1)\frac{\pi }{2}$
$2n\pi $
समीकरण ${\sin ^4}x + {\cos ^4}x + \sin 2x + \alpha = 0$, $\alpha $ के निम्न मान के लिए हल योग्य है
माना $S =\left[-\pi, \frac{\pi}{2}\right)-\left\{-\frac{\pi}{2},-\frac{\pi}{4},-\frac{3 \pi}{4}, \frac{\pi}{4}\right\}$ है। तब समुच्चय $A =\{\theta \in S : \tan \theta(1+\sqrt{5} \tan (2 \theta))=\sqrt{5}-\tan (2 \theta)\}$ में अवयवों की संख्या है
समीकरण $\log _{\frac{1}{2}}|\sin x|=2-\log _{\frac{1}{2}}|\cos x|$ के अंतराल $[0,2 \pi]$ में भिन्न हलों की संख्या ....... है |
$\tan 2 x=-\cot \left(x+\frac{\pi}{3}\right)$ को हल कीजिए
$\sin (9 x)+\sin (3 x)=0$ के हलों की संख्या बंद अंतराल $[0,2 \pi]$ में कितनी होगी ?