If $2\sin \theta + \tan \theta = 0$, then the general values of $\theta $ are
$2n\pi \pm \frac{\pi }{3}$
$n\pi ,2n\pi \pm \frac{{2\pi }}{3}$
$n\pi ,2n\pi \pm \frac{\pi }{3}$
$n\pi ,\,\,n\pi + \frac{{2\pi }}{3}$
Find the general solution of $\cos ec\, x=-2$
The numbers of solution $(s)$ of the equation $\left( {1 - \frac{1}{{2\,\sin x}}} \right){\cos ^2}\,2x\, = \,2\,\sin x\, - \,3\, + \,\frac{1}{{\sin x}}$ in $[0,4\pi ]$ is
The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals
If $\cos p\theta = \cos q\theta ,p \ne q$, then
Let,$S=\left\{\theta \in[0,2 \pi]: 8^{2 \sin ^{2} \theta}+8^{2 \cos ^{2} \theta}=16\right\}$. Then $n ( S )+\sum_{\theta \in S}\left(\sec \left(\frac{\pi}{4}+2 \theta\right) \operatorname{cosec}\left(\frac{\pi}{4}+2 \theta\right)\right)$ is equal to.