The number of all possible values of $\theta$, where $0<\theta<\pi$, for which the system of equations

$ (y+z) \cos 3 \theta=(x y z) \sin 3 \theta $

$ x \sin 3 \theta=\frac{2 \cos 3 \theta}{y}+\frac{2 \sin 3 \theta}{z} $

$ (x y z) \sin 3 \theta=(y+2 z) \cos 3 \theta+y \sin 3 \theta$ have a solution $\left(\mathrm{x}_0, \mathrm{y}_0, \mathrm{z}_0\right)$ with $\mathrm{y}_0 \mathrm{z}_0 \neq 0$, is

  • [IIT 2010]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $5$

Similar Questions

If the solution of the equation $\log _{\cos x} \cot x+4 \log _{\sin x} \tan x=1, x \in\left(0, \frac{\pi}{2}\right), \quad$ is $\sin ^{-1}\left(\frac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha, \beta$ are integers, then $\alpha+\beta$ is equal to:

  • [JEE MAIN 2023]

The sides of a triangle are $\sin \alpha ,\,\cos \alpha $ and $\sqrt {1 + \sin \alpha \cos \alpha } $ for some $0 < \alpha < \frac{\pi }{2}$. Then the greatest angle of the triangle is.....$^o$

  • [AIEEE 2004]

If $2{\cos ^2}x + 3\sin x - 3 = 0,\,\,0 \le x \le {180^o}$, then $x =$

Number of solutions to the system of equations $sin \frac{x+y}{2}=0$ and $|x| + |y| = 1$

Number of values of $x$ satisfying $2sin^22x = 2cos^28x + cos10x$ in $x  \in \left[ { - \frac{\pi }{4},\frac{\pi }{4}} \right]$ is-