If $2{\sin ^2}\theta = 3\cos \theta ,$ where $0 \le \theta \le 2\pi $, then $\theta = $
$\frac{\pi }{6},\frac{{7\pi }}{6}$
$\frac{\pi }{3},\frac{{5\pi }}{3}$
$\frac{\pi }{3},\frac{{7\pi }}{3}$
None of these
Number of principal solution of the equation $tan \,3x - tan \,2x - tan\, x = 0$, is
The equation $2{\cos ^2}\left( {\frac{x}{2}} \right)\,{\sin ^2}x\, = \,{x^2}\, + \,\frac{1}{{{x^2}}},\,0\,\, \leqslant \,\,x\,\, \leqslant \,\,\frac{\pi }{2}\,\,$ has
The number of values of $x$ for which $sin2x + sin4x = 2$ is
If $\sin \theta + \cos \theta = \sqrt 2 \cos \alpha $, then the general value of $\theta $ is
The angles $\alpha, \beta, \gamma$ of a triangle satisfy the equations $2 \sin \alpha+3 \cos \beta=3 \sqrt{2}$ and $3 \sin \beta+2 \cos \alpha=1$. Then, angle $\gamma$ equals