The number of solutions of $|\cos x|=\sin x$, such that $-4 \pi \leq x \leq 4 \pi$ is.

  • [JEE MAIN 2022]
  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $12$

Similar Questions

Find the general solution of the equation $\sin x+\sin 3 x+\sin 5 x=0$

The number of solutions of $tan\, (5\pi\, cos\, \theta ) = cot (5 \pi \,sin\, \theta )$ for $\theta$ in $(0, 2\pi )$ is :

If the equation $\cos ^{4} \theta+\sin ^{4} \theta+\lambda=0$ has real solutions for $\theta,$ then $\lambda$ lies in the interval

  • [JEE MAIN 2020]

If ${\left( {\frac{{\sin \theta }}{{\sin \phi }}} \right)^2} = \frac{{\tan \theta }}{{\tan \phi }} = 3,$ then the value of $\theta $ and $\phi $ are

If the sum of solutions of the system of equations $2 \sin ^{2} \theta-\cos 2 \theta=0$ and $2 \cos ^{2} \theta+3 \sin \theta=0$ in the interval $[0,2 \pi]$ is $k \pi$, then $k$ is equal to.

  • [JEE MAIN 2022]