यदि ${x^a}{y^b} = {e^m},{x^c}{y^d} = {e^n},{\Delta _1} = \left| {\,\begin{array}{*{20}{c}}m&b\\n&d\end{array}\,} \right|\,\,{\Delta _2} = \left| {\,\begin{array}{*{20}{c}}a&m\\c&n\end{array}\,} \right|$ और ${\Delta _3} = \left| {\,\begin{array}{*{20}{c}}a&b\\c&d\end{array}\,} \right|$हो, तब $ x $ और  $y$ के मान क्रमश: होंगे

  • A

    ${\Delta _1}/{\Delta _3}$ और  ${\Delta _2}/{\Delta _3}$

  • B

    ${\Delta _2}/{\Delta _1}$ और  ${\Delta _3}/{\Delta _1}$

  • C

    $log$ $({\Delta _1}/{\Delta _3})$ और $log$  $({\Delta _2}/{\Delta _3})$

  • D

    ${e^{{\Delta _1}/{\Delta _3}}}$ और ${e^{{\Delta _2}/{\Delta _3}}}$

Similar Questions

निम्नलिखित में दिए गए शीर्ष बिंदुओं वाले त्रिभुजों का क्षेत्रफल ज्ञात कीजिए।: $(1,0),(6,0),(4,3)$

यदि $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ तो $K = $

सारणिक $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$ का मान है 

यदि समीकरण $\left| {\,\begin{array}{*{20}{c}}x&3&7\\2&x&2\\7&6&x\end{array}\,} \right| = 0$का एक मूल -$9 $ हो, तो अन्य दो मूल होंगे

  • [IIT 1983]

$\theta \in(0, \pi)$ के मानों की संख्या, जिसके लिये रेखीय समीकरण निकाय $x+3 y+7 z=0$, $-x +4 y +7 z =0$, $(\sin 3 \theta) x +(\cos 2 \theta) y +2 z =0$ के अनिरर्थक हल हो, होगी

  • [JEE MAIN 2019]