सारणिक $\left| {\,\begin{array}{*{20}{c}}2&8&4\\{ - 5}&6&{ - 10}\\1&7&2\end{array}\,} \right|$ का मान है 

  • A

    $-440$

  • B

    $0$

  • C

    $328$

  • D

    $488$

Similar Questions

यदि $\left| {\,\begin{array}{*{20}{c}}a&b&c\\m&n&p\\x&y&z\end{array}\,} \right| = k$, तो $\left| {\,\begin{array}{*{20}{c}}{6a}&{2b}&{2c}\\{3m}&n&p\\{3x}&y&z\end{array}\,} \right| = $

समीकरण $\left|\begin{array}{ccc}x & -6 & -1 \\ 2 & -3 x & x-3 \\ -3 & 2 x & x+2\end{array}\right|=0$, के वास्तविक मूलों का योगफल है

  • [JEE MAIN 2019]

यदि $R$ में किन्हीं $\alpha$ तथा $\beta$ के लिए, निम्न तीन समतलों $x+4 y-2 z=1$, $x+7 y-5 z=\beta$, $x+5 y+\alpha z=5$ का प्रतिच्छेदन, $R ^{3}$ में एक रेखा है, तो $\alpha+\beta$ का मान है 

  • [JEE MAIN 2020]

यदि ${a_1},{a_2},{a_3}.....{a_n}....$ गुणोत्तर श्रेणी में हैं, तब सारणिक $\left| {\,\begin{array}{*{20}{c}}{\log {a_n}}&{\log {a_{n + 1}}}&{\log {a_{n + 2}}}\\{\log {a_{n + 3}}}&{\log {a_{n + 4}}}&{\log {a_{n + 5}}}\\{\log {a_{n + 6}}}&{\log {a_{n + 7}}}&{\log {a_{n + 8}}}\end{array}\,} \right|$ का मान होगा

  • [AIEEE 2004]

$\lambda$ तथा $\mu$ के क्रमश: मान, जिनके लिए समीकरण निकाय $x+y+z=2$, $x+2 y+3 z=5$, $x+3 y+\lambda z=\mu$ के असंख्य हल हैं

  • [JEE MAIN 2020]