यदि $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ तो $K = $
$-4$
$2$
$4$
$8$
यदि समीकरण निकाय
$2 x+3 y+6 z=8$ ; $x+2 y+a z=5$ ; $3 x+5 y+9 z=b$ का कोई हल नहीं है, तो $a$ और $b$ के मान है
रैखिक समीकरण निकाय $\mathrm{ax}+\mathrm{y}+\mathrm{z}=1$, $x+a y+z=1, x+y+a z=\beta$ के लिए निम्न में से कौनसा कथन सही नहीं है ?
यदि रेखीय समीकरण निकाय
$2 x + y - z =7$
$x -3 y +2 z =1$
$x +4 y +\delta z = k$ है, जहाँ $\delta, k \in R$ के अनंत हल है, तो $\delta+ k$ बराबर है :
$\left|\begin{array}{rr}2 & 4 \\ -1 & 2\end{array}\right|$ का मान ज्ञात कीजिए।
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; तो $a,b,c$ होंगे