यदि $\left| {\,\begin{array}{*{20}{c}}{ - {a^2}}&{ab}&{ac}\\{ab}&{ - {b^2}}&{bc}\\{ac}&{bc}&{ - {c^2}}\end{array}\,} \right| = K{a^2}{b^2}{c^2},$ तो $K = $

  • A

    $-4$

  • B

    $2$

  • C

    $4$

  • D

    $8$

Similar Questions

समीकरण निकाय $kx + y + z =1, x + ky + z = k$ तथा $x + y + zk = k ^{2}$ का कोई हल नहीं है, यदि $k$ बराबर है

  • [JEE MAIN 2021]

$\left| {\,\begin{array}{*{20}{c}}{1/a}&{{a^2}}&{bc}\\{1/b}&{{b^2}}&{ca}\\{1/c}&{{c^2}}&{ab}\end{array}\,} \right| = $

$A,B,C$ तथा $P,Q,R$ के प्रत्येक मान के लिए $\left| {\,\begin{array}{*{20}{c}}{\cos (A - P)}&{\cos (A - Q)}&{\cos (A - R)}\\{\cos (B - P)}&{\cos (B - Q)}&{\cos (B - R)}\\{\cos (C - P)}&{\cos (C - Q)}&{\cos (C - R)}\end{array}\,} \right|$ का मान है

  • [IIT 1994]

रैंखिक समीकरण निकाय

$x + y + z = 2$

$2x + 3y + 2z = 5$

$2x + 3y + (a^2 -1)\,z = a + 1$

  • [JEE MAIN 2019]

यदि समीकरणों के निकाय $\begin{array}{l}\alpha x + y + z = \alpha  - 1\\x + \alpha y + z = \alpha  - 1\\x + y + \alpha z = \alpha  - 1\end{array}$ का कोई हल नहीं है, तब $\alpha $ का मान है

  • [AIEEE 2005]