If ${x^a}{y^b} = {e^m},{x^c}{y^d} = {e^n},{\Delta _1} = \left| {\,\begin{array}{*{20}{c}}m&b\\n&d\end{array}\,} \right|\,\,{\Delta _2} = \left| {\,\begin{array}{*{20}{c}}a&m\\c&n\end{array}\,} \right|$ and ${\Delta _3} = \left| {\,\begin{array}{*{20}{c}}a&b\\c&d\end{array}\,} \right|$, then the values of $x$ and $y$ are respectively
${\Delta _1}/{\Delta _3}$ and ${\Delta _2}/{\Delta _3}$
${\Delta _2}/{\Delta _1}$ and ${\Delta _3}/{\Delta _1}$
$log$ $({\Delta _1}/{\Delta _3})$ and $log$ $({\Delta _2}/{\Delta _3})$
${e^{{\Delta _1}/{\Delta _3}}}$ and ${e^{{\Delta _2}/{\Delta _3}}}$
Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$
Find values of ${x},$ if $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$
Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :
If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is