If ${x^a}{y^b} = {e^m},{x^c}{y^d} = {e^n},{\Delta _1} = \left| {\,\begin{array}{*{20}{c}}m&b\\n&d\end{array}\,} \right|\,\,{\Delta _2} = \left| {\,\begin{array}{*{20}{c}}a&m\\c&n\end{array}\,} \right|$ and ${\Delta _3} = \left| {\,\begin{array}{*{20}{c}}a&b\\c&d\end{array}\,} \right|$, then the values of $x$  and $y$  are respectively

  • A

    ${\Delta _1}/{\Delta _3}$ and ${\Delta _2}/{\Delta _3}$

  • B

    ${\Delta _2}/{\Delta _1}$ and ${\Delta _3}/{\Delta _1}$

  • C

    $log$ $({\Delta _1}/{\Delta _3})$ and $log$ $({\Delta _2}/{\Delta _3})$

  • D

    ${e^{{\Delta _1}/{\Delta _3}}}$ and ${e^{{\Delta _2}/{\Delta _3}}}$

Similar Questions

If the system of equations $(\lambda-1) x+(\lambda-4) y+\lambda z=5$, $\lambda x+(\lambda-1) y+(\lambda-4) z=7$, $(\lambda+1) x+(\lambda+2) y-(\lambda+2) z=9$ has infinitely many solutions, then $\lambda^2+\lambda$ is equal to

  • [JEE MAIN 2025]

Evaluate the determinants : $\left|\begin{array}{ll}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right|$

Find values of ${x},$ if  $\left|\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right|=\left|\begin{array}{ll}x & 3 \\ 2 x & 5\end{array}\right|$

Number of triplets of $a, b \, \& \,c$ for which the system of equations,$ax - by = 2a - b$ and $(c + 1) x + cy = 10 - a + 3 b$ has infinitely many solutions and $x = 1, y = 3$ is one of the solutions, is :

If $a,b,c$ be positive and not all equal, then the value of the determinant $\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|$ is

  • [IIT 1982]