$\left| {\,\begin{array}{*{20}{c}}x&4&{y + z}\\y&4&{z + x}\\z&4&{x + y}\end{array}\,} \right| = $
$4$
$x + y + z$
$xyz$
$0$
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}0&x&{16}\\x&5&7\\0&9&x\end{array}\,} \right| = 0$ ના બીજ મેળવો.
સમીકરણો સંહતિ $x + 2y -3z = 1, (k + 3) z = 3, (2k + 1)x + z = 0$ એ સુસંગત ન હોય તો $k$ મેળવો.
જો સુરેખ સમીકરણો $x - 2y + kz = 1$ ; $2x + y + z = 2$ ; $3x - y - kz = 3$ નો ઉકેલ $(x, y, z) \ne 0$, હોય તો $(x, y)$ એ . . . . રેખા પર આવેલ છે .
સુરેખ સમીકરણ સંહતિ
$2 x-y+3 z=5$
$3 x+2 y-z=7$
$4 x+5 y+\alpha z=\beta$
માટે નીચેના માથી ક્યૂ સાચું નથી?
જો $\left| {\begin{array}{*{20}{c}}
{a - b - c}&{2a}&{2a}\\
{2b}&{b - c - a}&{2b}\\
{2c}&{2c}&{c - a - b}
\end{array}} \right|$ $ = \left( {a + b + c} \right)\,{\left( {x + a + b + c} \right)^2}$ , $x \ne 0$ અને $a + b + c \ne 0$, તો $x$ મેળવો.