$\lambda$ के वास्तविक मानों, जिनके लिए रैखिक समीकरण निकाय
$2 x -3 y +5 z =9$
$x +3 y - z =-18$
$3 x - y +\left(\lambda^2-|\lambda|\right) z =16$
का कोई हल नहीं है, की संख्या है :-
$0$
$1$
$2$
$4$
यदि समीकरणों के निकाय $x+y+z=2$, $2 x+4 y-z=6$, $3 x+2 y+\lambda z=\mu$ के अनन्त हल हैं, तो
समीकरण $\left| {\,\begin{array}{*{20}{c}}a&a&x\\m&m&m\\b&x&b\end{array}\,} \right| = 0$ के मूल हैं
यदि ${D_p} = \left| {\,\begin{array}{*{20}{c}}p&{15}&8\\{{p^2}}&{35}&9\\{{p^3}}&{25}&{10}\end{array}\,} \right|$, तो .${D_1} + {D_2} + {D_3} + {D_4} + {D_5} = $
यदि समीकरणों, $x + 2y - 3z = 1$, $(k + 3)z = 3,$ $(2k + 1)x + z = 0$ के निकाय का असंगत हल है, तो $ k$ का मान होगा
यदि $\left| {\,\begin{array}{*{20}{c}}{a + x}&{a - x}&{a - x}\\{a - x}&{a + x}&{a - x}\\{a - x}&{a - x}&{a + x}\end{array}\,} \right| = 0$ तो $x$ के मान होंगे