If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then

  • A

    $a,b,c$ are in $A. P.$

  • B

    $a,b,c$ are in $G. P.$

  • C

    $a,b,c$ are in $H. P.$

  • D

    None of these

Similar Questions

If $\omega $ is cube root of unity, then root of the equation $\left| {\begin{array}{*{20}{c}}
  {x + 2}&\omega &{{\omega ^2}} \\ 
  \omega &{x + 1 + {\omega ^2}}&1 \\ 
  {{\omega ^2}}&1&{x + 1 + \omega } 
\end{array}} \right| = 0$ is 

If $[x]$ denotes the greatest integer  $ \leq x$, then the system of linear equations
$[sin \,\theta ] x + [-cos\,\theta ] y = 0$

$[cot \,\theta ] x + y = 0$

  • [JEE MAIN 2019]

The system of linear equations  $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if

  • [JEE MAIN 2021]

If $\left| \begin{array}{*{20}{c}}
{ - 2a}&{a + b}&{a + c}\\
{b + a}&{ - 2b}&{b + c}\\
{c + a}&{b + c}&{ - 2c}
\end{array}\right|$ $ = \alpha \left( {a + b} \right)\left( {b + c} \right)\left( {c + a} \right) \ne 0$ then $\alpha $ is equal to

  • [AIEEE 2012]

Let $ \alpha _1, \alpha _2$ are two values of $\alpha $ for which the system $2 \alpha x + y = 5, x - 6y = \alpha $ and $x + y = 2$ is consistent, then $ |2(\alpha _1 + \alpha _2)| $ is -