If $\left| {\,\begin{array}{*{20}{c}}a&b&{a\alpha - b}\\b&c&{b\alpha - c}\\2&1&0\end{array}\,} \right| = 0$ and $\alpha \ne \frac{1}{2},$ then

  • A

    $a,b,c$ are in $A. P.$

  • B

    $a,b,c$ are in $G. P.$

  • C

    $a,b,c$ are in $H. P.$

  • D

    None of these

Similar Questions

The number of real values $\lambda$, such that the system of linear equations $2 x-3 y+5 z=9$  ;  $x+3 y-z=-18$    ; $3 x-y+\left(\lambda^{2}-1 \lambda \mid\right) z=16$ has no solution, is :-

  • [JEE MAIN 2022]

If the system of linear equations : $x+y+2 z=6$, $2 x+3 y+a z=a+1$, $-x-3 y+b z=2 b$ where $a, b \in R$, has infinitely many solutions, then $7 a+3 b$ is equal to :

  • [JEE MAIN 2025]

Let $a_1,a_2,a_3,....,a_{10}$ be in $G.P.$ with $a_i > 0$ for $i = 1, 2,....,10$ and $S$ be the set of pairs $(r,k), r, k \in N$ (the set of natural numbers) for which

$\left| {\begin{array}{*{20}{c}}
  {{{\log }_e}\,a_1^ra_2^k}&{{{\log }_e}\,a_2^ra_3^k}&{{{\log }_e}\,a_3^ra_4^k} \\
  {{{\log }_e}\,a_4^ra_5^k}&{{{\log }_e}\,a_5^ra_6^k}&{{{\log }_e}\,a_6^ra_7^k} \\ 
  {{{\log }_e}\,a_7^ra_8^k}&{{{\log }_e}\,a_8^ra_9^k}&{{{\log }_e}\,a_9^ra_{10}^k} 
\end{array}} \right| = 0$

Then the number of elements in $S$, is

  • [JEE MAIN 2019]

If $\omega$ is one of the imaginary cube roots of unity, then the value of the determinant $\left| {\begin{array}{*{20}{c}}1&{{\omega ^3}}&{{\omega ^2}}\\ {{\omega ^3}}&1&\omega \\{{\omega ^2}}&\omega &1\end{array}} \right|$ $=$

If $A_1B_1C_1,\, A_2B_2C_2,\, A_3B_3C_3$ are three digit number each of which is divisible by $k$ and $\Delta  = \left| {\begin{array}{*{20}{c}}
  {{A_1}{\kern 1pt} }&{{B_1}}&{{C_1}} \\ 
  {{A_2}}&{{B_2}}&{{C_2}} \\ 
  {{A_3}}&{{B_3}}&{{C_3}} 
\end{array}} \right|$ ; then $\Delta $ is divisible by