यदि $\omega $ इकाई का सम्मिश्र घनमूल हो, तो $\left| {\,\begin{array}{*{20}{c}}1&\omega &{ - {\omega ^2}/2}\\1&1&1\\1&{ - 1}&0\end{array}\,} \right| = $
$0$
$1$
$\omega $
${\omega ^2}$
एक तृतीय कोटि के सारणिक में, प्रथम स्तम्भ के प्रत्येक अवयव को दो पदों के योग के रुप में, द्वितीय स्तम्भ के प्रत्येक अवयव को तीन पदों के योग के रुप में तथा तृतीय स्तम्भ के प्रत्येक अवयव को चार पदों के योग के रुप में लिखा गया है, तब इस सारणिक को $ n$ विभिन्न सारणिकों के योग के रुप में लिख सकते हैं, जहाँ $n$ का मान है
यदि $a \ne b \ne c,$ तो $x$ का वह मान, जो समीकरण $\left| {\,\begin{array}{*{20}{c}}0&{x - a}&{x - b}\\{x + a}&0&{x - c}\\{x + b}&{x + c}&0\end{array}\,} \right| = 0$ को संतुष्ट करता है, है
अंतराल $(0,4 \pi)$ में $\theta$ के मानों, जिनके लिए रैखिक समीकरण निकाय
$3(\sin 3 \theta) x-y+z=2$
$3(\cos 2 \theta) x+4 y+3 z=3$
$6 x+7 y+7 z=9$
का कोई हल नहीं है, की संख्या है:
किसी गुणोत्तर श्रेणी के $p$ वें, $q$ वें तथा $ r$ वें पद क्रमश: $l,m,n$ हो तो $\left| {\,\begin{array}{*{20}{c}}{\log l}&{p\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log m}&{q\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\\{\log n}&{r\,\,\,\,\,\begin{array}{*{20}{c}}1\end{array}}\end{array}\,} \right|$ का मान होगा
यदि रैखिक समीकरण निकाय $x-4 y+7 z=g$, $3 y-5 z=h$, $-2 x+5 y-9 z=k$ संगत (consistent) है, तो