सारणिकों का मान ज्ञात कीजिए:
$\left|\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right|$
Let $A=\left[\begin{array}{ccc}2 & -1 & -2 \\ 0 & 2 & -1 \\ 3 & -5 & 0\end{array}\right]$
By expanding along the first column, we have:
$|A|=2\left|\begin{array}{cc}2 & -1 \\ -5 & 0\end{array}\right|-0\left|\begin{array}{cc}-1 & -2 \\ -5 & 0\end{array}\right|+3\left|\begin{array}{cc}-1 & -2 \\ 2 & -1\end{array}\right|$
$=2(0-5)-0+3(1+4)$
$=-10+15=5$
$f(x)=\left|\begin{array}{ccc}\sin ^{2} x & 1+\cos ^{2} x & \cos 2 x \\ 1+\sin ^{2} x & \cos ^{2} x & \cos 2 x \\ \sin ^{2} x & \cos ^{2} x & \sin 2 x\end{array}\right|, x \in R$ का अधिकतम मान है
माना $A =\left(\begin{array}{ccc}{[ x +1]} & {[ x +2]} & {[ x +3]} \\ {[ x ]} & {[ x +3]} & {[ x +3]} \\ {[ x ]} & {[ x +2]} & {[ x +4]}\end{array}\right)$, जहाँ [t]महत्तम पूर्णांक $\leq t$ को दर्शाता है। यदि $\operatorname{det}( A )=192$ है, तो $x$ के मानों का समुच्चय निम्न में से कौन सा अन्तराल है?
यदि समीकरण निकाय $x-2 y+3 z=9$, $2 x+y+z=b$, $x-7 y+a z=24$ के अनंत हल हो, तो $a - b$ का मान होगा
अंतराल $-\frac{\pi}{4} \leq x \leq \frac{\pi}{4}$ में, $\left|\begin{array}{lll}\sin x & \cos x & \cos x \\ \cos x & \sin x & \cos x \\ \cos x & \cos x & \sin x\end{array}\right|=0$ के भिन्न वास्तविक मूलों की संख्या है
यदि $\left| {\,\begin{array}{*{20}{c}}a&b&{a + b}\\b&c&{b + c}\\{a + b}&{b + c}&0\end{array}\,} \right| = 0$; तो $a,b,c$ होंगे